Thioredoxin-mediated negative autoregulation of peroxisome proliferator-activated receptor alpha transcriptional activity.
نویسندگان
چکیده
PPARalpha, a member of the nuclear receptor superfamily, and thioredoxin, a critical redox-regulator in cells, were found to form a negative feedback loop, which autoregulates transcriptional activity of PPARalpha. Thioredoxin was identified as a target gene of PPARalpha. Activation of PPARalpha leads to increase of thioredoxin expression as well as its translocation from cytoplasm to nucleus, whereas ectopic overexpression of thioredoxin in the nucleus dramatically inhibited both constitutive and ligand-dependent PPARalpha activation. As PPARalpha-target genes, the expression of muscle carnitine palmitoyltransferase I, medium chain acyl CoA dehydrogenase, and apolipoprotein A-I were significantly down-regulated by nucleus-targeted thioredoxin at transcriptional or protein level. The suppression of PPARalpha transcriptional activity by Trx could be enhanced by overexpression of thioredoxin reductase or knockdown of thioredoxin-interacting protein, but abrogated by mutating the redox-active sites of thioredoxin. Mammalian one-hybrid assays showed that thioredoxin inhibited PPARalpha activity by modulating its AF-1 transactivation domain. It was also demonstrated by electrophoretic mobility-shift assay that thioredoxin inhibited the binding of PPARalpha to the PPAR-response element. Together, it is speculated that the reported negative-feedback loop may be essential for maintaining the homeostasis of PPARalpha activity.
منابع مشابه
Thioredoxin-mediated Negative Autoregulation of Peroxisome Proliferator-activated Receptor Transcriptional Activity
PPAR , a member of the nuclear receptor superfamily, and thioredoxin, a critical redox-regulator in cells, were found to form a negative feedback loop, which autoregulates transcriptional activity of PPAR . Thioredoxin was identified as a target gene of PPAR . Activation of PPAR leads to increase of thioredoxin expression as well as its translocation from cytoplasm to nucleus, whereas ectopic o...
متن کاملRole of peroxisome proliferator-activated receptor alpha and gamma in antiangiogenic effect of pomegranate peel extract
Objective(s): Herbal medicines are promising cancer preventive candidates. It has been shown that Punica granatum L. could inhibit angiogenesis and tumor invasion. In this study, we investigated whether the anti-angiogenic effect of pomegranate peel extract (PPE) is partly attributable to Peroxisome proliferator-activated receptors (PPARs) activation in the Human Umbilical Vein Endothelial Cell...
متن کاملThe Role of Peroxisome Proliferator Activator Receptor Alpha in Cerebral Ischemia-Reperfusion Injury; a Review Study
Peroxisome proliferator-activated receptor alpha (PPAR-α), which belongs to the nuclear receptor family of ligand-activated transcription factors, was first described as gene regulators for metabolic pathways including lipid metabolism, insulin sensitivity, and glucose homeostasis. Were raised. This nuclear receptor is widely expressed in various tissues, providing a wide range of effects to st...
متن کاملCompare the Effect of Eicosapentaenoic Acid and Oxidized Low-Density Lipoprotein on the Expression of CD36 and Peroxisome Proliferator-Activated Receptor Gamma
Background: There is evidence that CD36 promotes foam cell formation through internalizing oxidized LDL (ox-LDL) into macrophages therefore, it plays a key role in pathogenesis of atherosclerosis. In addition, CD36 expression seems to be mediated by nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ). The aim of the present study was to evaluate and compare the effect of ...
متن کاملThyroid hormone receptor mutants: Dominant negative regulators of peroxisome proliferator-activated receptor action
Thyroid hormone (T3) and peroxisome proliferators have overlapping metabolic effects in the maintenance of lipid homeostasis. Their actions are mediated by their respective receptors: thyroid hormone receptors (TR) and peroxisome proliferator-activated receptors (PPAR). We recently found that a dominantly negative TR mutant (PV) that causes a genetic disease, resistance to thyroid hormone, acts...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology of the cell
دوره 17 4 شماره
صفحات -
تاریخ انتشار 2006